10082 J. Phys. Chem. R003,107,10082-10089

Analytic and Variational X a in the Slater—Roothaan Method

Brett I. Dunlap
Code 6189, Theoretical Chemistry Section, US&l&esearch Laboratory, Washington, D.C. 20375-5342

Receied: October 4, 2002; In Final Form: May 19, 2003

An analytic and mathematically variational linear-combination-of-atomic-orbitals density-functional method
that allows arbitrary scaling of the SlateGaspa—Kohn—Sham exchange-correlation potential about each
atom is described. The method can be made exact in the separated-atom limit. It is based on robust and
variational fitting, which is reviewed and extended to fast-multipole methods. The -SRé@thaan method
requires four basis sets and delivers a total energy that is independent of all fitting errors through first order.
A database of atomic Gaussian basis sets is used to construct inputs for a standard set of 56 molecules. That
database contains our basis sets as well as the DGauss DZVP2 deuolé-311G triple: polarized Gaussian

basis sets for fitting molecular orbitals. Another two subdatabases contain the s- and non-s-type basis sets for
fitting the charge density and the exchange-correlation potentials, which are related to the cube root of a
partitioned density and its square. A bond-centered basis function can be added to all fitting bases via software.
Eight different fitting basis sets are studied. Using the HartFemck values ofy, these molecules are overbound

on average, but using a uniforon= 0.7, these molecules are underbound on average, independent of fitting
basis. Mixing exact exchange will not obviously improve the method.

Introduction If there were no problem with numerical integration in
N o ] ) _quantum chemistry, then the preferred basis might become

_ Traditional ab initio physical chemists use the word varia- nymerical atomic orbitals, which are the product of spherical
tional to describe energies that rigorously bound the exact energynarmonics and numeric radial functions about each atom. Such
from above. One good thing that can be said about the Hartree pasis functions are used in the DMOL approach to BFThese
Fock (HF) energy is that it bounds the nonrelativistic, Bern  pasis functions ensure an exact solution to the DFT equations
Oppenheimer energy from above. Because of the vastly i the separated-atom limit. Because molecular orbitals decay
influential work of Peter Pulaythe word variational now almost exponentially with distance far from a molecule and have cusps
never appears in the physica}l chemistry literature in a meaningful 4t the nuclei, one can probably achieve an equally satisfactory
context, because all physical chemical computer codes arespjytion of the numerical DFT equations using a slightly larger
mathematically variational with respect to orbital coefficients. pasis of Slater-type-orbitals (STO'’s) as in the ADF cétle,
With Gaussian orbitals, the energy must be variational in order ggyssian type orbitals are correct neither close to the nuclei
to have reliable forces. This development means that if no part nor far from any nucleus. Thus, an accurate solution of
of the electronic energy is approximated then the code gives agchralinger's equation or any of its various simplifications
completely mathematically variational energy. It also means that requires a very large number of Gaussian-type-orbital (GTO)
if any part of the electronic energy is fitted then the code delivers pasis functions. Fortunately GTO’s are much more localized
an energy that is not mathematically variational unless the fit than STO’s or numerical wave functions, and one can readily
is variational as defined in this work. use a very large GTO basis set. In practice, however, one uses

Approximate Kohn-Shan? energies must differ from the  rather small GTO basis sets together with the variational
Schradinger energy if the Schdinger energy is the exact principle, which ensures that the computed energy is accurate
Kohn—Sham (KS) energy. A variational result for one energy through first order in the error made by using a small number
does not necessarily provide an upper bound to another energyof GTO'’s to fit the molecular orbitals. The variational principle
This work considers energies that differ, but differ only in is essential to the current success of Gaussian-based quantum
second order in a fitted quantity. Such fitted energies are called chemistry and likely to be essential to any future that Gaussians
robust. might have in quantum chemistry. This work extends variational

Gaussian-based ab initio quantum chemistry (AIQC) has use of rather small GTO basis sets to fit both the molecular
embraced KS density-functional theory (DFT). The strength of Orbitals and the electronic potential. The atomic potentials are
AIQC has been that the theory involves no three-dimensional independently variable through a parameterfor each element,
(3-D) numerical integration, i.e., is analytic. The energy of the Which could be adjusted to give exact separated-atom limits.
most popular AIQC method B3LYPwhich mixes HF and DFT, These parameters are not optimized in this work. Instead
however, can only be computed using 3-D numerical integration. traditional values are used and the mathematical stability of this
The problems associated with numerical integration in AIQC hew nonlinear method demonstrated.
are well-knowr=° This work extends the purview of analytic Slater invented the precurdéto DFT as a method that is
AIQC to a method that has asymptotic properties similar to computationally faster than HF. The significant computational
Xao,1° but avoids the muffin-tin approximation and preserves difference between DFT and HF is that in the former all
the variational principle. electrons see the same local, KS potential, whereas in the latter
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every electron sees a differential potential due to the dther

1 electrons. It is both efficient and natural to fit the KS potential
to linear-combination-of-atomic-orbitals (LCAO) form in any
LCAO DFT methodt4~16 One can, however, defeat Slater’s
purpose by treating the KS potential using theriethods that analytically. In the following an overbar represents a fitted

are efficient and natural in GTO approaches to? Fitting guantity, andA indicates the difference between exact and fitted
all of the KS potential except the long-ranged Coulomb terms quantities. One way to fit the KS potential is to fit separately
to LCAO Gaussian form ensures that that part of the potential the charge densityp, and the exchange-correlation potential,

dies off rapidly with distance from any atom just like the 7.

corresponding atomic component of a molecular orbital does. No matter how the charge density is fit, one can compute

A large and growing number of quantum mechanical opera- the Coulomb energy of the electronic charge distribution that
tors can be treated analytically using robust and variational is accurate through first order in the error made due to fitting.
fitting72%24 This work defines a new analytic and variational A unique robust Coulomb energy is generated using only the
density-functional method called the Slat&toothaan (SR) exact and fitted charge densitiés,
method. The names are chosen because it is based on Slater's
Xoo method! but it is also analytic and variational via extension || o~ Dp||pC= 20| o B|pH= [p||p— [Ap||ApD (4)
of the methods of Rootha&h.

The next section describes fitting charge distributions robustly Thus, the error in making this approximation for the Coulomb
and variationally. The method is applied to fitting multipole energy is the self-Coulomb energy of the difference between
moments of charge distributions. The third section describes the exact and fitted charge densityp = p — p. The error is
fitting the 43 power of a function robustly and variationally. nonnegative because it is an enefgand it will decrease as
The following section describes the origin of thexXnethod the quality of the fit increases. For use in quantum chemistry,
and modern applications. The fifth section combines these fitting one must take a complete variation of this robust Coulomb
methods into the SR method, which is completely analytic and energy,
variational in all fitting basis sets. The density is partitioned
according to atomic center. The geometric mean of the atomic (5)

o’s multiply each two-center part of the density. Preliminary

work suggests that the SR method is acceptably insensitive tolf the fitting basis has full variational freedom, then the last
choice of fitting base® and that it is stable enough to follow term vanishes and one can freely interchange the exact and fitted
DFT chemical dynamics at identically zero electronic temper- quantities, which arg andp in this case. If the fitting basis is
ature?’ It approximates as close as possible the old nonvaria- incomplete, however, then a stationary fitted energy requires
tional multiple-scattering ¥ method. That section also describes that the full variation, the right-hand side of eq 5, be used to
all the major fitting basis sets that have been published and generate the corresponding Fock matrix. Alternatively, the
uses them in doublé&-and triple calculations on a standard ~ €nergy also remains variational if the Fock matrix is unchanged,
test set of molecules. A final section discusses the resultsbut the fit is determined by setting the variation of the energy

€j, has been diagonalized by a unitary transformation of the
orbitals, which is always possible in DFT because the Kehn
Sham potential is local or multiplicative.

This work concerns fitting the KS potential to GTO’s

oLl o= 20p||0pUH 2[dp||p — pLJ

obtained using the SR method.

Robust and Variational Fitting of Charge Densities
In KS DFT the electronic energy,

E=" nfyuCH Bllp0+ E(onp) @

is (apart from the kinetic energy) a functional of the total density,
o(r), which is in turn the sum of both spin densities,

ps(r) = Znisu;ks(r)uis(r) (2)

wheren;s is the occupation of theéh molecular orbitalyis(r),

of spin s It also depends on the standard one-electron fart,
of electronic structure theory (kinetic energy, nuclear attraction,
and applied electric field in the BorrOppenheimer, nonrela-
tivistic limit), the self-Coulomb repulsion of the density, and
the spin-dependent exchange and correlation functipallThe
notation,[a||bC] represents half of the Coulomb energy of charge
distributiona(r) in the electric field of another charge distribu-
tion b(r). Variation of this energy with respect to an orbital,
constrained by Lagrange multiplieks, to be orthogonal to the
remaining orbitals yields the KS equations,

W |, | ou, O+ 20| |uou, O [y | ufou = €| ou 0 (3)

in variational form, wherexis the functional derivative dy.
with respect tayuui. In this expression the eigenvalue matrix,

with respect to the fit (last term) in eq 5 to zero. This latter
approach is taken throughout this work, except for the case of
multipole moments, which have independent definition. If this
second, minimalist strategy is used to ensure variationality, then
the fit is said to be variational.

Hereini, j, k, etc. label basis functionand subscripts indicate
the basis set when necessary. Zeroing the variation of the
robustly fitted Coulomb energy with respect to the LCAO
coefficients gives the simplest variational fit,

f[llp — pU= el Y qWIE=0=¢ = Y WjT §l|e0
J ]
(6)

This expression contains the inverse of the Coulomb repulsion
matrix, which by definition satisfiedi = ;0 |jT 10| k0 This
robust and variational fit of a charge distribution is called by
others the resolution of the identity (RI) meth&#? As will

be shown, this terminology incorrectly suggests the need for
complete basis sets and high precision arithmetic.

An unconstrained fit, such as eq 6 is seldom used in traditional
DFT calculations. Instead codes typically allow the user to
constrain the fit to contain the proper amount of chalges
¢l whereN is the number of electrons anillis the charge
of ith fitting basis function. The fit is obtained using a Lagrange
multiplier A14-16

c= lznu iT Gl pCH AGD) 7)

where satisfying the constraint implicitly givés
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So far nothing has been said about the functional form to
which the charge density is robust and variationally fit.

Dunlap

in which case the two fits are the two multipole moments, or
of the field, in which case the fits are of the multipole fields.

Gaussians are used in quantum chemistry because the producthe robust fit,

of two Gaussians is a third Gaussian centered on the line joining

the original two,

exp(-a(r — a)* — f(r —b)’) =

exp[— a"f Ha—b (ot ﬁ)(r -

2]

If both centers are the same, then the exponent of the final

Gaussian is the sum of the exponents of the original two. If
= f then the exponent is doubled. Thus, it is natural to fit the

charge density to atom-centered Gaussians that have exponen

between twice the smallest and twice the largest s-type

exponents in the orbital basis for each atom. An s-type charge-

density-fitting basis, which has roughly the same flexibility as

the orbital basis, is obtained by simply scaling all the exponents

by a factor of 221 This basis will be called the scaled s-type
basis in the following.

Because of the long-range nature of the Coulomb force, the

[Pall 060~ 0l 5p 2 B, 0y Tpaal1B, 20 (12)

contains more multipole interactions than either of the first two
terms on the right-hand side of this equation because each entire
density feels the multipole fields of the other. The third term
removes double counted terms.

Three changes are necessary to a fast-multipole code to make
it robust and give variational energy. First, make certain that
all expressions involving multipoles were treated symmetrically.

t§econd, add to the energy the easily computed Coulomb energy

of the multipoles interacting with each other. Third, all of eq 5
must be used to construct the Fock matrix; i.e., it must be
reflected in a fitting-modified KS potential.

The Robust and Variational LCAO Three-Fourths-Power
Functional

One can take the cube root (and other rédtsf a function,

Coulomb potential, rather than the charge density, can be fit to f(r), using robust and variational fitting. Le&fr) be an LCAO

Fourier serie¥-31and/or multipole field$3233in periodic crystals
and for large molecule¥®:3> Equations 4 and 7 deliver robust
and variation fits if the Coulomb potential is fit to short-ranged
Gaussians and a few long-range functiéh$? One can
optimize both the long-rangétand short-rangéf parts of these

mixed basis sets. For calculations on small or compact systems,

the same accuracy requires more fitting functions if the potential
is fit than if the charge density is fi.37 Obviously, potential
fitting wins over charge density fitting for large enough systems
described by a single global fitting baskilt is better still to
use multiple fitting basis sets rather than one large global fitting
basis to fit the Coulomb interactions of large systems.

The Coulomb interaction between two charge distributions

can be recast to include a quadratic error term involving both
fits,23:24

l])a”pr: I])a”pb[H_ maHpr_ @a”f’b'}" mSpa”Apr (9)

Ignoring only the quadratic error yields an interaction energy
that is symmetric and robust,

(Bl o= L4l [PuLH Dol 0pl— Dbyl 00 (10)

If the two charge distributions are sufficiently removed that they

do not overlap, then the smallest number of terms arise if the

approximation to the cube root of the function andyiét) be
an LCAO approximation to the square obr equivalently an
LCAO approximation to thé/s power off. For any such fits,
the associated errors can be defined,

f3(r) = x(r) + AX(r)
23(r) = y(r) + Ay(r)

The robust approximation to thé power off(r) using these
two fits,

(13)

3f3(r) = 4f(r)x(r) — 2&()y(r) + YA(r) + order®?) (14)

is unigue, however. Ik andy approximate the cube root and
cube root squared df then one-third of this equation less the
guadratic terms will yield a better, i.e., robust approximation
to the#/3 power off.7:22

Setting the variation of th#z power functional with respect
to x(r) to zero, i.e., making it variational,

0= x| f — xyO (15)

determinesx in the absence of constraint. If thebasis is
complete, then its solution,

f(r) = x(r)y(r) (16)

Coulomb interaction is treated using the Gaussian or continuousimpncmy givesx. If, on the other hand, thebasis is incomplete,

fast multipole method®*3 It is convenient to define the
interaction energy of approximations to two charge densities
through multipole-moment cutoffls; and Ly,

Ly

[Pal oo B, 1Py 2= 20
15=

1=0 m=—1ly

l1

Ly I
Z allmllzzoNlllz z X

my==12

b|ij| 1,ml(va)?lz,mz(vb) (11)

la—Dbj
where theN,,, are normalization constants; Ya) = a'Yim(8)/

V(I +ml(l —m) is a solid harmonic, an@y,m, = ¥ ,moal]

andby,m, = ¥|,meplare the strengths of each multipole. For

then this equation is only an approximation. It becomes exact
when projected against any of tlebasis functions, which is

eq 15, if that variation is taken with respect to ai.CAO
coefficient. We use the constraint that the integraf ahd xy

be the same. Setting the variation of ttigpower functional
with respect toy(r) to zero, i.e., making it, too, variational
implicitly determinesy,

0= By|¥* — yO (17)
If the y basis is complete, then its solution,
y(r) = x4(r) (18)

the evaluation of these derivatives see refs 44 and 45. In thisgivesy(r). If the y basis is incomplete, then this equation is
case, the fit can either be considered to be of the charge densitypnly an approximation. It becomes exact when projected against
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any of they basis functions, which is eq 17 if the variation is space. Integrating the average exchange energy yields the total
taken with respect to & LCAO coefficient. Solving that exchange energy
equation eliminatey,

o =— 9(%”@““5 (26)
]
’ Slater realized that this density-functional approximation for
Also, givenx, one can define a scalar, exchange would greatly simplify HF because every electron
would see the same potential.
X = ZBXimeyUl%XXD (20) HF spin-unrestricted calculations are suspect because they

favor high spin. For crystals spin-unrestricted calculations are

Iyl
- quite important, however, as they provide a quantitative theory

and from it a vector by variation, of magneti;m, which is caused I_oy an excess n_umber Qf electrons
of one spin due to electronic exchange interactions. For
X = X =4 X T o] 21 properties that are'dependent on the electronic structure in the
' Jy%m" ]ymﬂ’k” D}VX (21) vicinity of the Fermi energy (average of the HOMO and LUMO

energy levels), a variational approach is superior to a complete
averaging. Gspa®® and later Kohr-Shan? used a variational
approach to determine the density-functional exchange energy.
1 _ . _ . They obtained two-thirds of Dirac’s exchange energy. Thus, a
Xj = —0X = EZELJXI@D]K/I),D [ xxCH- ALK XK | L XU parametero. has been introduced to define thewXéxchange
2 5 22) energy for up spin,

and from that a matrix by another variation,

9/ 3\113
Thus, one can solve the constrained LCA@power problem Ey=— a—(—) EbeD (27)

using Newtor-Raphson, if a scalar and vector are defined A

toward satisfying the constraint Xa energies are obtained by replacikg. in eq 1 with this

) 1 expression and minimizing this energy in an SCF calculation.
n = [fandN, = %E&Jymlﬂ/ﬂ & xx] (23) Schwarz fixedx by equating the X and HF energies for atoms
W in a spin-restricted calculatiod.The HF o varies monotonically
from 0.97804 for H to 0.70383 for Nb. The correspondirig

A Newton—Raphson step is simply for spin-unrestricted calculations vary from 0.77627 for H to
. 0.69248 for Rr? HF theory is exact for H, and for heavier
Ax = zxij (G 0= X + AN) (24) atoms, the difference between the ldFand the values oft
]

that would give the exact total electronic energy are quite small.
. o This is because correlation energies are much smaller than
where the Lagrange undetermined multiplier is implicitly ~ gychange energies, which in DFT include the self-Coulomb

determined by satisfying the constraint interaction of all orbitals.
Thus, the theory has widest applicability if each element is
ZAXiNi =n- inNi (25) allowed to have its own, which is the case in the original
I |

applications'® This was accomplished via the muffin-tin ap-

. . . ) . proximation®? in which the potential is approximated as being
dGradllents of Fh's fpnctlfonal for (tjhe special casef bking the spherically symmetric near each atom and constant in between.
ensity are given in refs 46 and 47. . . That model dissociates correctly if the muffin-tin spheres grow

This problem is nonlinear, but the self-consistent-field (SCF) i, gjze with distance between atoms. In the separated-atom limit,

method was developed to s_olye nonl_inear problems. Thus, theréhe calculation could reproduce the atomic calculation. That is
is no additional problem with including this functional in any .+ the case with HE.

quantum-chemical method that requires SCF solution. Of course, | e theory, the separated-atom limits lie artificially very
all SCF calculations do not converge at times, a problem that 1, jn energy due to the inclusion of ionic character in the HF
ha§ no soluypn other than trying a different starting point O wave function®® Thus, HF binding energies are much too low
adjusting mixing parameters. We start from superposed atomic 4,4 HE vibrational frequencies are too high. Thus, nonDFT ab
potentials as approximate KS potentials. That gives the densityjii frequencies are scaled by a factor less than one. In a study
and orbitals, which in turn allow us to determine a neand of 1066 frequencies, all ab initio scaling factors are less than
thus a new KS po.ter.1t|al.. In thg calculations described below 5 pet scaling factors, even allowing hybrid functionals to be
the new KS potential is mixed with roughly half of the old SCF included in either set, and all are less than hdhe
potential. Toward the end of the SCF process the DIIS o\ |utionary advantage of theaXmethod® was that it was
proceduré is begun to speed convergence. fast, it was based on first-principles, and it allowed molecules
- . to dissociate correctly. The disadvantage was that its KS
il;tter—Gaspar—Kohn—Sham Exchange Functional and potential was discontinuous. Thus, the energy was hard to define
and evaluat&® and no variational principles were developed.
In a homogeneous electron gas the electronic quantumThus, the muffin-tin approximation has been abandoned in
numbers are linear momentum and sffiirac-averaged HF guantum chemistry, and the first nonmuffin-tin DFT codes
exchange for each spin over all momentum up to the highestadopted the compromise value of 847f a single value ofu
occupied orbitals, which due to the isotropic nature of the can be used, then variational calculations are possible using the
approximation, form a spherical Fermi surface in momentum Gaussian basis set to fit the orbitals and the KS potetitial.
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Xa energies in which the values afvary from atom to atom ~ TABLE 1: Spin-Polarized HF a Values®? for the Atoms
can be estimated from uniform calculation$® The approach ~ Used in This Study*

of correcting a uniforma calculation can be extended to element a element a

generate good thermochemistry with a small computation H 0.776 27 = 0.735 87

effort.57-59 It should be useful to develop an analytic and Li 0.77157 Na 0.73

variational Xo-like method that precisely recovers the total Be 0.768 23 Si 0.727 51

energy of atomized molecules. The SR method is such a method, 2 g-;gé gi Z %%ﬁ %g

but this work will not address optimizing. N 0.745 22 e 0.793 26
(0] 0.741 88

The Slater—Roothaan Method and Basis Sets

In any LCAO approach the density, eq 2, may be expanded of the gradients of the three-center overlap integrals. The
in terms of an LCAO density matri; multiplying products variational process takes care of the rest.
of atomic orbitals, Our gradients are precise for fractional-occupation-number
solutions’2 but DFT is problematical in cases of degeneracy.
p(r) = Zpij¢i(r)¢j(r) (28) Thus, all calculations have been performed in the highest
! symmetry for which the KohrSham equations have integral-
By definition the atomic orbitalsp, are centered on atoms, so occupati(_)n_-numbgr, unrestricted solutions. All geometries have
LCAO quantum chemistry is replete with methods that associate P€€N o%t?!mlz_ed using the Broydefletcher-Goldfarb-Shanno
density with individual atoms. Mulliken population analysis is method® which sometimes does not converge for a diatomic
one. In it, each density matrix element is associated with two M0lecules because it hops back and forth between two separa-
atoms equally, half to the atom of the first index and the other tions: Other than that, SCF convergence and geometry optimiza-
half to the atom of the second index. In this work it is simpler tion was never a problem.

computationally to use the geometric mean of the tu® to Unfortunately, the derivative code is quite slow, and opti-
definef, mization of large fullerenes such as4§* or carbon nanotube
segments using polarized basis sets is not practical at this time;
f(r) = za(i)a(j)P§¢i(r)¢j(r) (29) however, better derivative methods are kn&wbut not yet
[

optimally implemented®
A standard set of molecules containing first- and second-
row atom§” includes 54 molecules in 56 electronic states. The
. 3\U33/8 geometry of these molecules are all optimized in about an hour
o(i) = lsa‘(ﬂr) 1

where s indicates spin, and the function,

(30) on a PC, and are easily used for a simple test of the feasibility
of SR calculations. Table 1 gives the spin-polarized values of
includesay, the value ofx of the atom on which atomic orbital @ linearly interpolated, where necessary, from ref 52. Our code
i is centered. For a single center eq 29 squares this quantityuses solid-harmonic GaussidfisThus, the smallest standard
and determining andy variationally raise that to th#; power orbital basis set with polarization functions that it can readily
to give the constant of eq 27. In this, one of many full and Use is 6-311G*%%7 which was downloaded from PNNL.
variational implementations of analyticoX the o associated These were entered into an orbital database for use with our
with cross terms in the density matrix is the geometric mean of code via the UNIX operating system. Our orbital basis sets,
the two atomico’s. In the separated-atom limit no part of the Which tend to be bigger due to less contraction, are also entered
density matrix is on two different atoms. Thus, SR separates into that database.
into atoms, with independent values @fin that limit. Our work has spawned a number of research efforts. Fitting
The full SR energy is written, is being established in quantum chemistry and there are several
4 choices for fitting basis sets. A package of orbita),and
_ _ _ exchange-correlation basis (for fitting the VWN local-density
E= znimiﬁlluim 2Lpl1pL= Dplipt- Zé[ﬂggD— functional? was optimize@ for use with DGaus$ The
' = 5 DGauss valence doubfp{DZ) orbital basis set DZVP2 has
(M) XAy H Yy 0 (31) been added to our orbital database and is used for comparison
3 with valence triple (TZ) 6-311G**. Ahlrichs’ group has
) ) generated another valence TZ orbital basis set and a matched
where the orbitalsp,and x and y for both spins are to be  R|.j pasis for fitting the charge density in the Turbomole
determined variationally. This work considers the only the program?576 These bases have been downloaded. The orbital

smallest of molecules. Thus, it is appropriate to make each pagjs set is not used, and the Jitting bases are labeled “R1J”
LCAO fit global. Allfits, including the two exchange-correlation iy the following.

fits, are constrained in these calculations. The functional form An SR calculation requires three fitting basis sets andy.

of f can be quite general and thus enable a wide variety of g \ork examines only eight different combinations chosen
different LCAO Xa-like density-functional methods. to span the space from large to small basis sets. The errors in
an SR calculation correlate with the amount of energy that that
basis set affects. The biggest error is due to orbital-basis-set
The SR method is implemented by storing in code the atomic incompleteness. The second biggest error is due to an incomplete
values of a and loading the three-eighths power of the p basis. That error is always positive; and we will see that for
appropriate value into an extension of the array that stores thea fixed orbital basis the atomization energy is always higher
nuclear charges. That array is used to multiply the two orbitals for the smallest fitting basis sets. The easiest way to improve
in the integral off and the three-center overlap integraigk, any basis set is to add bond-centered s-type functions. These
The gradient codé¢%61needs a similar change in the evaluation practical functions cut down on the need for high-angular

Computational Methods and Basis Sets
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momentum functions to fit these nodeless quantities. If one RIJ in parentheses, with contractions in square brackets,
bond-centered function is used for each fitting basis set, then itare: H 1p (2p1d); Li 2pld (2p2d1f); Be 3p3d (2p2dify-E

is best to choose the exponent 1.0 au forghmsis and 0.3 au  3p3d (3p3d1lf), Na 4p4d (4p4dlf[2p2d1lf]); and-Sil 4p4d

for the other two bases. The use of these bond-centered functiong6p5d1flg[3p2d1flg]). Thus, the ratio of basis size A2:RIJ
will be indicated by yes in the “Bond” column of the following  for the elements used in this work are as follows: H, 3:11; Li,
tables. 11:23; Be, 24:23; €F, 24:31; Na, 32:23; SiCl, 32:35. In total,

The next choice concerns atom-centered fitting functions that eight fitting bases are used in this work.
have zero angular momentum, i.e., s-type functions. This type Becké” compellingly demonstrated both theoretically, through
of basis function is special because our calculations start fromthe adiabatic connection formula that relates the eleetron
overlapping atomic potential. Starting coefficients are needed €lectron interactions of KS noninteracting and interacting
only for this type of fitting function, which must be input. We  densities, and numerically, through a study of 54 molecules in
can get s-type bases from any orbital basis set by sc#ling: 56 electronic states, that mixing HF and local density functional
two to fit the charge density, b¥s to generate the s-type (LDF) calculations would cure LDF overbinding. Overbinding
basis, and by/s to generate the s-typebasis. This we do and  had been known to be a serious problem with LDF calculations
attach the atomip andx fitting coefficients (without exponents, ~ for a long time, but X. does not share the problethThis fact
which are generated by software) to all orbital basis sets. ThisiS demonstrated in Table 2, which compares atomization
basis and coefficients are overridden if some other s-type basisénergies using the biggest fitting bases (bond-centered and scaled
is input. Such alternative s-type fitting basis sets require the s-type and RIJ non-s-type fitting functions). Becke did not list
input of exponents as well as a setehtomic coefficients and his LDF results. They have been reconstructed in the third
a set ofx fitting coefficients for two spins. (Only exponents ~ column by multiplying his half-and-half results by two and
are used in the SR method.) subtracting his exact (HF) exchange results. The trend for all

In this work the s-type basis set choice is between scaled these molecules is apparent in the average (last row). The half-

orbital exponents and the s-type part of the TurbomoleJ RI- and-half model (not Becke’s best) has an average absolute error
basis. This choice is labeled by “Scaled” and “RIJ” in the of 6.5 kcal/molé” and it will be taken as close enough to be

following, and it only affects the basis. All calculations use ~ reated as exact in analyzing this table. On average, HF
scaledx andy s-type bases. The RIJ basis is the smaller of Underbinds by 70 kcal/mol and LDF overbinds by as much.
these two bases. As optimized, the RIJ bases are contracted] N table also includes three analytic and variational X

but they were optimized for a different orbital basis than that calculations. The fifth column uses the 6-311G** basis and HF
used in this work. Thus, all stype fitting functions are values ofa.. The last column is identical except for using the
uncontracted in this work. DGauss DZ basis. The biggest difference between the last two

. . _ . . . . lumns is for BeH. The range in BeH DZ di iation energi
The final choice of fitting functions is potentially quite coumns IS for 5e © range " dissociation energies

significant because it represents different philosophies between.USing the eight fitting bases is'0.0j46.053 H'- The TZ range
the developers of DGauss and Turbomole. Each exponent oS 0.089—0.093_H. Per_haps this difference is due to the fact
angular momenturh actually representd 2+ 1 .fitting functions that the_ T2 basis ha_s five p exponents compared to one for the

o . e DZ basis. In comparison to Becke’s work, the last three columns
that allow the angular momentum to point in arbitrary directions.

It i d set of ; h based of Table 2 are quite similar. As a rule they correlate better to
an even-tempered Set ol exponents Were cnosen Dased Oy, o ha it and-half method then to the two extremes. Exceptions

representative bond distances, then the number of fitting to this rule are K, LiH, and H,, which are very close to HF
functions would rapidly get out of hand as the maximum angular and B, which is close} to LDF’ '

momentum increased. Consequently, the DGauss basis functions
are arbitrarily limited toL < 3. In the following these basis set
are labeled “A2”, because they are so named in a file called
BASIS originally distributed with the DGau¥sand deMor’ Table 3 globally compares the eight fitting bases when used
codes. These basis sets have different exponents for differentwith the 6-311G** orbital basis and ift is 0.7 everywhere.
basis sets. To keep things simple and show that SR calculationsThe mean and mean absolute errors relative to experifhent
are reliable, however, the DGauss charge-density exponents arare compared. The biggest spreads in mean atomization error
used in all fitting basis sets. There is a basis called “A2” occur if there is either no bond functions, 2.2 kcal/mol, or if
downloadable from PNNL. It is larger, and is called “A3” in  the A2 basis set is used, 1.9 kcal/mol. The total spread in
BASIS for first-row atoms. The A2 basis set is efficient like atomization energy error is 2.6 kcal/mol. Treating the choice
the early Gaussian basis sets in using the same exponents foof fitting basis as introducing uncertainty, then these calculations
the s p, and d basis sets, but unlike the early Gaussian basisunderbind by 4.2t 0.9 kcal/mol. The spread in mean absolute
sets it does not use contractions. energies, 0.5 kcal/mol, is relatively small.

The entire RIJ basis used with a Turbomole TZ orbital basis Table 4 considers using the HF valuesooivith two orbital
is expected to be accurate to 0.02 mH for nonspherically basis sets. Now all calculations indicate overbinding. 6-311G**
symmetric atoms, which cannot be achieved without higher overbinds by 5.8t 1.1 kcal/mol and the DGauss DZVP2 basis
angular-momentum fitting functions, and the total fitting error overbinds by 3.2t 0.8 kcal/mol. All spreads are larger than if
less than one mH for small molecul&sEFor atoms that have  a uniformo value is used. The biggest spreads occur if no bond-
open shell electrons of angular momentupthe density must ~ centered function is used or if the A2 basis is used. The mean
have components of angular momentutn. Zherefore, for absolute variation is reduced significantly, from almost 5 to 1
second-row atoms with polarized orbital basis functions, the kcal/mol if the TZ orbital basis, rather than DZ orbital basis is
RI-J fitting basis hag functions. The basis is made manageable used.
by reducing the total number of fitting functions through Xa overbinds some molecules and underbinds others, both
contraction for p and d bases. These basis set are labeledf o = 0.7 and if the HF values aft are used. This contrasts
“RIJ” in the following. Specifically, the number of func-  with the LDA, which uniformly overbinds, and HF, which
tions for stretches of the periodic table for A2 followed by uniformly underbinds. From the signs of the mean errors in

Discussion
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TABLE 3: Mean and Mean Absolute Error Relative to
Experiment (kcal/mol)78 in the Atomization Energy of the
Set of Molecules Listed in the Previous Table for a Uniform
o Equal to 0.7 Using the 6-311G** Orbital Basis Set and

TABLE 2: Comparing Becke's Numerical Atomization
Energies®” Dy (kcal/mol), with Our Analytic X a Values for
56 Molecule$

Becke’s ; e ¥
half Yo 0=07 Xa Different Flttll’.lg. Ba\sls.Sets'ﬁ1
exact and half LDF (6-311G**) (6-311G**) (DZ) fitting basis 6-311G**
H, 78.4 101.8 125.2 85.1 82.8 86.8 bond s-type pdfg-type mean absolute
LiH 32.2 53.1 74.0 37.6 34.7 33.2
BeH 461 559 657 559 49.7 291 n R e " %2
CH 51.4 78.1 104.8 66.6 64.4 66.5 no scaled A2 26 13.4
CH,(®B;) 143.1 185.0 226.9 1915 179.9 191.4 no scaled RIJ 4' 7 13' 5
CH;(*A;)) 1154 167.7 220.0 156.2 148.6  156.7 yes RIJ A2 4.0 13.3
CHs 2248 2941 363.4 294.9 279.4 295.4 yes RIJ RIJ 4' 6 13' 4
CH, 300.9 396.6 492.3 402.2 381.8 403.5 ] Y
yes scaled A2 4.5 13.4
NH 443 768 109.3  66.7 641 6638 yes scaled RIJ 52 137
NH, 103.6 1679 2322  156.0 1489 1577 ' '
NH3 179.0 273.6 368.2 269.8 256.1 272.3 2 The rows test different fitting options as indicated by the first three
OH 62.0 994 136.8 97.6 93.8 98.3 columns. The fitting-basis-set types and names are discussed in the
H,O 142.4 2150 287.6 225.2 213.4 227.9 text. Note that the mean absolute error is quite independent of fitting
HF 91.0 1322 173.4 1421 135.4  144.3 bpasis set to 0.5 kcal/mol.
Liz 2.8 17.0 31.2 6.6 6.7 54
LiF 85.9 1286 171.3 142.9 134.7 132.5 TABLE 4: Mean and Mean Absolute Error Relative to
CoH, 275.6 384.7 493.8  416.9 394.3  405.9 Experiment (kcal/mol) in the Atomization Energy of the
CoH,4 395.0 534.8 674.6 563.0 533.1 559.4 Molecules of Table 1 for the 6-311G** and DGauss DZ
CoHe 503.8 674.4 845.0 701.3 663.6 702.6 Orbital Basis Set Using the HF Value ofa for Each Atom
CN 68.6 157.4 2462  187.2 180.5 178.0 Using Different Fitting Basis Set$
HCN 185.8 290.6 3954 312.9 300.3 302.6 - :
co 167.9 2450 3221 2787 269.8  265.7 fitting basis 6-311G DGauss Dz
HCO 168.2 264.2 360.2 301.5 288.3 293.9 bond s-type pdfg-type mean absolute mean absolute
H.CO 235.8 3514 467.0 387.8 369.4 382.1 _ _
CHOH 3342 4810 6278 5136 4861 5150 o oV A Ty A S
N2 108.0 205.2 3024 213.1 209.4 200.6 _7 ' A '
no scaled A2 7.6 17.0 4.8 16.1
N2H4 230.3 399.2 568.1 408.7 386.6 4115 _ _
no scaled RIJ 51 16.4 2.8 15.4
NO 439 1345 225.1 160.9 158.7 152.0 yes RIJ A2 —6.1 16.3 —25 19.2
(o)) 23.7 1079 1921 1555 150.5 1499  Joo Ry RIJ 52 164 —23 19.0
H20, 1135 239.7 365.9 278.6 265.3 279.4 led A2 _5' 16.3 _3' 1 '
F ~418 228 874 652 632 660 Yoo Sa€ = ' o B
2 : ' : . : : yes  scaled RIJ —4.6 16.4 -3.0 15.6
CO, 227.7 368.9 510.1 447.0 428.0 430.1
SiH, (*A;) 1009 1440 187.1 12538 1189 12538 2The eight fitting-basis-set options are described in the text.
SiH,(°B;) 95.2 128.1 161.0 120.4 113.9 120.1
SiHs 1634 2168 270.2 194.4 184.9 1936 e binding energy ag is increased.) For this set of molecules,
SiH, 233.3 3059 3785 281.0 266.3 281.7 h th | | dominated by hvd d
PH, 960 1460 196.0 1251 1201 127.6 Where the molecules are dominated by hydrogen compounds,
PHs 152.8 226.0 299.2  202.1 193.8 206.6 the difference between using HF and= 0.7 is substantial.
H.S 120.0 173.1 226.2  160.9 156.0  165.2 This work shows that the conventional ab initio SCF process
HCI 742 102.4 130.6 99.4 97.2 99.7  can support some imposed changes in the potential from atom
gia? _33% %% 1%%-i 7%}8 6%3; 750-22 to atom. The spread in absolute mean deviation going from
2 ) : : : : ) Table 3 to Table 4 suggests that as the variatiom ftbm atom
P, 320 1015 171.0 91.6 90.9 92.3 . ; -
S, 458 98.1 150.4  105.0 102.7 106.4 1o atom increases, bigger basis sets s_hould _b(_e used.
Cl, 16.5 547 929 61.4 59.4 60.0 The concepts of robust and variational fitting have been
NaCl 69.3 925 1157 87.8 85.3 85.9 reviewed and the definitions applied to fitting the charge density
g'g 18‘11-2 ggg ggg; 1?2-% ig?-g igié and its%/3 power. Any LCAO density can be associated with
S0 458 1154 1850 1379 1319 141 atoms and paws_of atoms, natl_JraIIy partitioning t_h_e density. A
clo —10.6 545 1196 76.6 72 2 79.5 Partitioned density allows scaling, by atom-specdia/alues,
CIF 20 537 105.4 77.1 73.1 80.6 the Slater-Gaspa—Kohn—Sham exchange functional for each
Si;He 379.4 506.1 632.8 473.1 449.8 4745 atom. The final method, called the Slatd&2oothaan method,
CHCl 2723 3749 4775  392.6 3739 3940 s quite well behaved computationally for small molecules
HCSH 3201 4482 5763 4580 4355  462.9 containing first- and second-row atoms. The comparisonaf X
HOCI 66.5 149.3 232.1 169.8 161.7 1735 treated iati v with other DET thods for th | |
SO, 00.2 2315 3728 2727 2505 2753 (reated variationally with other methods for these molecules
average 131.1 2043 277.6 213.3 203.6 211.7 is far from complete. In particular, a meaningful comparison

2 After the molecule/state. th tth | Becke' trequires at least the optimization of the atomis, which might
er the molecuie/state, the next three columns use becke's exac ; i ; ]
exchange, his half-and-half model and, from those two, his LDF require that the total energy in all atomized limits be exact for

calculations. The fifth and sixth columns use the 6-311G** basis, while each ba5|§ §et. This work tested these robust and variational
the last uses the DGauss DZVP2 basis. The sixth column uses a constarffonlinear fitting methods for a large number of heterogeneous
value of o of 0.7 everywhere. The two neighboring columns (sixth molecules and orbital, fitting, and bond-centered basis sets.
and eighth) use instead the HF valuesuofor each element. Analytic DFT is reliable. Now the physical chemistry can be
meaningfully optimized.

Tables 3 and 4, on average a uniform valuexdaet to 0.7 is These tests must also be extended to heavy-atoms and large
too low and the HF values af are too high. (Chemical bonds  molecules. For heavy-atom molecules the calculations scale as
are characterized by the buildup of charge between atoms. ThusNe. For large molecules a robust and variational fast-multipole
the superlinear ¥ exchange and correlation functional increases method should be used, which in order to eliminate all first-
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order errors must be modified, eq 12. A Department of Defense

Common High Performance Software Support Initiative has

J. Phys. Chem. A, Vol. 107, No. 47, 200B0089

(38) Manby, F. R.; Knowles, P. Phys. Re. Lett. 2001, 87, 163001.
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on very large molecules.
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